您的当前位置:首页正文

多边形的内角和

2020-08-13 来源:要发发教育

  四川射洪  邱银

  2005-05-06

  教学任务分析

  教学目标 

  知识技能

  通过探究,归纳出   

  数学思考

  1、  通过测量、类比、推理等数学活动,探索的公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。

  2、  通过把多边形转化成三角形体会转化思想在几何中的应用,同时

  时让学生体会从特殊到一般的认识问题的方法。

  3、  通过探索多边形内角和公式,让学生逐步从实验几何过度到

  论证几何

  解决问题

  通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效的解决问题。

  情感态度

  通过对生活中数学问题的探究,进一步提高学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学的重要作用,感受数学活动的重要意义和合作成功的喜悦,提高学生学习的热情。

  重点

  探索多边形内角和的公式的探究过程。

  难点

  在探索时,如何把多边形转化成三角形。

  知识联系

  多边形的对角线和三角形的内角和为本节课的知识做了铺垫,本节课的内容为多边形的外角和做知识上的准备。

  知识背景

  对多边形在生活中有所认识

  学习兴趣

  通过探究过程更能激发学生学习的兴趣。

  教学工具

  三角板和几何画板。

  教学流程设计

  活动流程图

  活动内容和目的

  活动一,教师和学生任意画几个多边形,用量角器测其内角和

  活动二、探索四边形的内角和

  活动三、探索五边形、六边形、七边形的内角和

  活动四、探索任意公式

  活动五、多边形内角和公式的运用

  活动六、小结和布置作业 

  通过分组测量,得出这几个

  通过用不同方法分割四边形为三角形,探索四边形的内角和。

  通过类比四边形内角和的得出方法,探索其他,发展学生的推理能力

  通过把多边形转化成三角形体会转化思想在几何中的应用,同时让学生体会从特殊到一般的思考问题方法

  通过画正八边形体会和应用

  梳理所学知识,达到巩固发展和提高的目的

  教学过程 设计

  问题与情景

  师生行为

  设计意图

  设计情景:什么是正多边形?

  正八边形有什么特点?

  你会画边长为3cm的正八边形吗?

  学生思考并回答问题

  学生不会画八边形,画八边形需要知道它的每一个内角,怎么就能知道八边形的每一个内角,就是今天要解决的问题,以此来激发学生的学习兴趣和求知欲。

  活动1、

  在练习本画出任意四边形,五边星,六边形,七边形

  分组让学生量出每一个多边形的内角并求出他们的内角和,教师在黑板上画这四个四边形

  通过测量猜想每一个,感受数学的可实验性,感受数学由特殊到一般的研究思想

  活动2(重点)(难点)

  探索四边形的内角和

  学生在练习本上把一个四边形分割成几个三角形,教师在黑板上画几个四边形,叫几个学生来分割,从而用推理求四边形的内角和,师生共同讨论比较那一种分割方法比较合理有优点。

  通过分割及推理,培养学生用推理论证来说明数学结论的能力,同时也培养学生比较和归纳的能力。

  活动3、探索五边形、六边形,七边形的内角和

  学生根据活动二的分析,进一步用最优方法来分割五边形、六边形,七边形,从而通过推理得出他们的内角和

  通过分割及推理,进一步培养学生的解决问题和推理的能力。

  活动4、探索任意

  把活动2和3中的结论写下来,进行对比分析,进一步猜想和推导任意,教师作总结性的结论,并且用动画演示多边形随着边数的增加其内角和的变化过程。

  通过猜想、归纳、推导让学生体会从特殊到一般的思想,通过公式的归纳过程,体会数形之间的联系

  活动5、画一个边长为3cm的八边形

  让学生在练习本上画一个边长为3cm的八边形,教师进行评价和展示

  巩固和应用多边形内角和,培养学生的应用意识

  活动6、小结和布置作业 

  师生共同回顾本节所学过的内容

因篇幅问题不能全部显示,请点此查看更多更全内容