您的当前位置:首页正文

LM124W_05

2022-06-30 来源:要发发教育
现货库存、技术资料、百科信息、热点资讯,精彩尽在鼎好!

LM124W-LM224W-LM324W

Low Power Quad Operational Amplifiers

■Wide gain bandwidth: 1.3MHz

■Input common-mode voltage range includes ground

■Large voltage gain: 100dB

■Very low supply current/ampli: 375µANDIP14■Low input bias current: 20nA(Plastic Package)■Low input offset voltage: 3mV max.■Low input offset current: 2nA■

Wide power supply range:Single supply: +3V to +30VDual supplies: ±1.5V to ±15V

DDescription

SO-14(Plastic Micropackage)These circuits consist of four independent, highgain, internally frequency compensatedoperational amplifiers. They operate from a singlepower supply over a wide range of voltages.Operation from split power supplies is alsopossible and the low power supply current drain isPindependent of the magnitude of the power supplyTSSOP-14voltage.

(Thin Shrink Small Outline Package)All the pins are protected against electrostaticdischarges up to 2000V (as a consequence, theinput voltages must not exceed the magnitude ofVCC+ or VCC-.)

Order Codes

Part NumberTemperature RangePackage

PackagingLM124WNTubeLM124WD/WDT-55°C, +125°C

DIPSOTube or Tape & Reel

LM224WN

DIPTube

LM224WD/WDT-40°C, +105°C

SOTube or Tape & Reel

LM224WPTTSSOP(Thin Shrink Outline Package)

Tape & ReelLM324WNDIPTubeLM324WD/WDT0°C, +70°C

SOTube or Tape & ReelLM324WPT

TSSOP(Thin Shrink Outline Package)

Tape & Reel

Rev 2June 2005

1/16

www.st.com16Absolute Maximum RatingsLM124W-LM224W-LM324W

1 Absolute Maximum Ratings

Table 1.

SymbolVCCViVidPtot

Supply voltage Input Voltage

Differential Input Voltage (1)Power DissipationN SuffixD Suffix

Output Short-circuit Duration (2)

IinToperTstg

Input Current (3)

Operating Free-air Temperature RangeStorage Temperature Range

Thermal Resistance Junction to AmbientSO14TSSOP14DIP14

HBM: Human Body Model(4)

ESD

MM: Machine Model(5)CDM: Charged Device Model

1.Either or both input voltages must not exceed the magnitude of VCC+ or VCC-.

2.Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current

is approximately 40mA independent of the magnitude of VCC. Destructive dissipation can result from simultaneous short-circuit on all amplifiers.3.This input current only exists when the voltage at any of the input leads is driven negative. It is due to the

collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. this transistor action can cause the output voltages of the op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration than an input is driven negative.

This is not destructive and normal output will set up again for input voltage higher than -0.3V.4.Human body model, 100pF discharged through a 1.5kΩ resistor into pin of device.

5.Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with

no external series resistor (internal resistor < 5Ω), into pin to pin of device.

15Key parameters and their absolute maximum ratings

Parameter

LM124W

LM224W±16 or 32-0.3 to Vcc + 0.3-0.3 to Vcc + 0.3500

500400Infinite50

-55 to +125-40 to +105

-65 to +150

103100667001001.5

0 to +70

mA°C°C

500400LM324W

UnitVVVmW

Rthja

°C/W

VVkV

2/16

LM124W-LM224W-LM324WPin & Schematic Diagram

2 Pin & Schematic Diagram

Figure 1.Pin connections (top view)Output 11Inverting Input 12Non-inverting Input 13V CC+4Non-inverting Input 2Inverting Input 256+-+--+-+14Output 413Inverting Input 412Non-inverting Input 411VCC-10Non-inverting Input 398Inverting Input 3Output 3Output 27Figure 2.Schematic diagram (1/4 LM124W)3/16

Electrical CharacteristicsLM124W-LM224W-LM324W

3 Electrical Characteristics

Table 2.

SymbolVio

VCC+ = +5V, VCC-= Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified)

Parameter

Input Offset Voltage - note (1)

Tamb = +25°C

Tmin ≤ Tamb ≤ TmaxInput Offset Current Tamb = +25°C

Tmin ≤ Tamb ≤ Tmax

Input Bias Current - note (2)Tamb = +25°C

Tmin ≤ Tamb ≤ TmaxLarge Signal Voltage Gain

VCC+ = +15V, RL = 2kΩ, Vo = 1.4V to 11.4VTamb = +25°C

Tmin ≤ Tamb ≤ Tmax

Supply Voltage Rejection Ratio (Rs ≤ 10kΩ)VCC+ = 5V to 30VTamb = +25°C

Tmin ≤ Tamb ≤ Tmax

Supply Current, all Amp, no load Tamb = +25°C VCC = +5V VCC = +30V

Tmin ≤ Tamb ≤ Tmax VCC = +5V VCC = +30VInput Common Mode Voltage Range

Min.

Typ.2

Max.352040100200

UnitmV

Iio

2nA

Iib

20nA

Avd

5025

100

V/mV

SVR

6565

110

dB

ICC

0.71.50.81.51.231.23

mA

Vicm

VCC = +30V - note (3)Tamb = +25°C

Tmin ≤ Tamb ≤ Tmax

Common Mode Rejection Ratio (Rs ≤ 10kΩ)Tamb = +25°C

Tmin ≤ Tamb ≤ Tmax

Output Current Source (Vid = +1V)VCC = +15V, Vo = +2V

Output Sink Current (Vid = -1V)VCC = +15V, Vo = +2VVCC = +15V, Vo = +0.2V

00

VCC -1.5VCC -280

V

CMR

7060201012

dB

Isource

402050

70

mA

Isink

mAµA

4/16

LM124W-LM224W-LM324W

Table 2.

SymbolElectrical Characteristics

VCC+ = +5V, VCC-= Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified)

ParameterHigh Level Output VoltageVCC = +30VTamb = +25°C RL = 2kΩTmin ≤ Tamb ≤ TmaxTamb = +25°C RL = 10kΩTmin ≤ Tamb ≤ TmaxVCC = +5V, RL = 2kΩTamb = +25°CTmin ≤ Tamb ≤ TmaxLow Level Output Voltage (RL = 10kΩ)Tamb = +25°CTmin ≤ Tamb ≤ TmaxSlew Rate VCC = 15V, Vi = 0.5 to 3V, RL = 2kΩ, CL = 100pF, unity GainGain Bandwidth Product VCC = 30V, f =100kHz,Vin = 10mV, RL = 2kΩ, CL = 100pFTotal Harmonic Distortion: f = 1kHz, Av = 20dB, RL = 2kΩ, Vo = 2Vpp, CL = 100pF, VCC = 30VEquivalent Input Noise Voltagef = 1kHz, Rs = 100Ω, VCC = 30VInput Offset Voltage DriftInput Offset Current DriftChannel Separation - note (4) 1kHz ≤ f ≤ 20kHZMin.Typ.Max.UnitVOH262627273.532728VVOL52020mVSRGBPTHDenDVioDIIioVo1/Vo20.41.30.0154071012030200V/µsMHz%nV-----------HzµV/°CpA/°CdB1.The direction of the input current is out of the IC. This current is essentially constant, independent of the state of

the output so no loading change exists on the input lines.2.Vo = 1.4V, Rs = 0Ω, 5V < VCC+ < 30V, 0 < Vic < VCC+ - 1.5V

3.The input common-mode voltage of either input signal voltage should not be allowed to go negative by more

than 0.3V. The upper end of the common-mode voltage range is VCC+ - 1.5V, but either or both inputs can go to +32V without damage.4.Due to the proximity of external components insure that coupling is not originating via stray capacitance

between these external parts. This typically can be detected as this type of capacitance increases at higher frequences.Table 3.Vcc+ = +15V, Vcc- = 0V, Tamb = 25°C (unless otherwise specified)

SymbolVioAvdIccVicmVOHVOLIosGBPSR

RL = 2kΩ (VCC+=15V)RL = 10kΩ

Vo = +2V, VCC = +15VRL = 2kΩ, CL = 100pFRL = 2kΩ, CL = 100pFRL = 2kΩNo load, per amplifier

ConditionsValue0100350-15 to +13.5+13.55+401.30.4

UnitmVV/mVµAVVmVmAMHzV/µs

5/16

Electrical Characteristics

Figure 3.

Input bias current vs. ambient temperatureINPUT BIAS CURRENTversus AMBIENT TEMPERATUREIB (nA)LM124W-LM224W-LM324W

Figure 4.

Current limiting

24211815129630 -55-35-15 5 25 45 65 85 105 125AMBIENT TEMPERATURE (°C)Figure 5.Input voltage rangeFigure 6.Supply currentSUPPLY CURRENT4VCCSUPPLY CURRENT (mA)3mAID-2+1Tamb = 0°C to +125°CTamb = -55°C0102030POSITIVE SUPPLY VOLTAGE (V)Figure 7.Gain bandwidth productFigure 8.Common mode rejection ratio6/16

LM124W-LM224W-LM324W

Figure 9.Electrical curvesElectrical Characteristics

7/16

Electrical Characteristics

Figure 10.Input currentLM124W-LM224W-LM324W

Figure 11.Large signal voltage gainFigure 12.Power supply & common mode

rejection ratioFigure 13.Voltage gain

8/16

LM124W-LM224W-LM324WTypical Single - Supply Applications

4 Typical Single - Supply Applications

Figure 15.High input Z adjustable gaind DC

instrumentation amplifierR1100kWFigure 14.AC coupled inverting amplifier

Rf100kWR110kW1/4LM124WCIR1(asshownAV=-10)e1AV=-Rf1/4LM124WR3100kWR4100kWCo0eoRL10kW2VPPR22kWGainadjust1/4LM124WeOeI~VCCR2100kWRB6.2kWR3100kWR5100kWR6100kWR7100kW1/4LM124We2if R1 = R5 and R3 = R4 = R6 = R7C110mF1-- (e2 -e1)e0 = 1+---------R22RAs shown e0 = 101 (e2 - e1).Figure 16.AC coupled non inverting amplifierR1100kWC10.1mFCI1/4LM124WFigure 17.DC summing amplifiere1100kWR21MWAV=1+R2R1(asshownAV=11)Co0eoRL10kW100kW2VPP1/4LM124WeOe2e3100kW100kW100kWRB6.2kWeI~R31MWR4100kWVCCC210mFR5100kWe4100kWe0 = e1 +e2 -e3 -e4Where (e1 +e2) ≥ (e3 +e4)to keep e0 ≥ 0VFigure 18.Non-inverting DC gainAV=1+R2R1(AsshownAV=101)Figure 19.Low drift peak detectorIB1/4LM124W10kW1/4LM124WeO+5VeIZI1/4LM124WIB1mFC*2IB2N9292IBR1MWeoZo0.001mFIB3R3MWIB1/4LM124WR110kWR21MWeO(V)Inputcurrentcompensation0eI(mV)*Polycarbonateorpolyethylene9/16

Typical Single - Supply Applications

Figure 20.Activer bandpass filter

LM124W-LM224W-LM324W

Figure 21.High input Z, DC differential

amplifierRR14For -------=-------RR23(CMRR depends on this resistor ratio match)R1100kWC1330pF1/4LM124We1R410MWC2330pFR5470kW1/4LM124WR2100kWR1100kW1/4LM124WR4100kWR3100kW1/4LM124WR310kW1/4LM124WR6470kWeOR7100kWVCCR8100kWC310mF+V1+V2VoFo = 1kHzQ = 50Av = 100 (40dB)⎛R4⎞e0 1+------- (e2 - e1)⎝R3⎠As shown e0 = (e2 - e1)Figure 22.Using symmetrical amplifiers to

reduce input current (general concept)IeIIBIIB1/4LM124Weo2N9290.001mFIBIB3MWIB1/4LM124WAux.amplifierforinputcurrentcompensation1.5MW10/16

LM124W-LM224W-LM324WMacromodels

5 Macromodels

Note:Note: Please consider following remarks before using this macromodel:All models are a trade-off between accuracy and complexity (i.e. simulation time).Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values.A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the product.Data issued from macromodels used outside of its specified conditions (Vcc, Temperature, etc.) or even worse: outside of the device operating conditions (Vcc, Vicm, etc.) are not reliable in any way.** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS :* 1 INVERTING INPUT

* 2 NON-INVERTING INPUT* 3 OUTPUT

* 4 POSITIVE POWER SUPPLY* 5 NEGATIVE POWER SUPPLY

.SUBCKT LM124 1 3 2 4 5 (analog)

*******************************************************.MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F* INPUT STAGE

CIP 2 5 1.000000E-12CIN 1 5 1.000000E-12EIP 10 5 2 5 1EIN 16 5 1 5 1

RIP 10 11 2.600000E+01RIN 15 16 2.600000E+01RIS 11 15 2.003862E+02DIP 11 12 MDTH 400E-12DIN 15 14 MDTH 400E-12VOFP 12 13 DC 0 VOFN 13 14 DC 0

IPOL 13 5 1.000000E-05CPS 11 15 3.783376E-09DINN 17 13 MDTH 400E-12VIN 17 5 0.000000e+00DINR 15 18 MDTH 400E-12VIP 4 18 2.000000E+00

FCP 4 5 VOFP 3.400000E+01FCN 5 4 VOFN 3.400000E+01FIBP 2 5 VOFN 2.000000E-03FIBN 5 1 VOFP 2.000000E-03* AMPLIFYING STAGE

FIP 5 19 VOFP 3.600000E+02

11/16

Macromodels

FIN 5 19 VOFN 3.600000E+02RG1 19 5 3.652997E+06RG2 19 4 3.652997E+06CC 19 5 6.000000E-09DOPM 19 22 MDTH 400E-12DONM 21 19 MDTH 400E-12

HOPM 22 28 VOUT 7.500000E+03VIPM 28 4 1.500000E+02

HONM 21 27 VOUT 7.500000E+03VINM 5 27 1.500000E+02EOUT 26 23 19 5 1VOUT 23 5 0ROUT 26 3 20

COUT 3 5 1.000000E-12DOP 19 25 MDTH 400E-12VOP 4 25 2.242230E+00DON 24 19 MDTH 400E-12VON 24 5 7.922301E-01.ENDS

LM124W-LM224W-LM324W

12/16

LM124W-LM224W-LM324WPackage Mechanical Data

6 Package Mechanical Data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

6.1 DIP14 PackagePlastic DIP-14 MECHANICAL DATAmm.DIM.MIN.a1Bbb1DEee3FILZ1.273.38.52.5415.247.15.10.1300.511.390.50.25200.3350.1000.6000.2800.2011.65TYPMAX.MIN.0.0200.0550.0200.0100.7870.065TYP.MAX.inch 2.540.0500.100P001A13/16

Package Mechanical DataLM124W-LM224W-LM324W

6.2 SO-14 Package

SO-14 MECHANICAL DATADIM.Aa1a2bb1Cc10.350.190.545˚ (typ.)0.3360.2280.0500.3004.05.31.270.688˚(max.)0.1490.1810.0190.1570.2080.0500.0260.3440.2440.1mm.MIN.TYPMAX.1.750.21.650.460.250.0130.0070.0190.003MIN.inchTYP.MAX.0.0680.0070.0640.0180.010D 8.558.75Eee3FGLMS3.84.60.55.81.277.626.2PO13G14/16

LM124W-LM224W-LM324WPackage Mechanical Data

6.3 TSSOP14 Package

TSSOP14 MECHANICAL DATAmm.DIM.MIN.AA1A2bcDEE1eKL0˚0.450.600.050.80.190.094.96.24.356.44.40.65 BSC8˚0.750˚0.0180.0241TYPMAX.1.20.151.050.300.205.16.64.480.0020.0310.0070.0040.1930.2440.1690.1970.2520.1730.0256 BSC8˚0.0300.0040.039MIN.TYP.MAX.0.0470.0060.0410.0120.00890.2010.2600.176inchAA2A1beKcLEDE1PIN 1 IDENTIFICATION10080337D15/16

Revision HistoryLM124W-LM224W-LM324W

7 Revision History

DateSept. 2003June 2005

Revision

13

First Release

ESD protection inserted in Table1 on page2Changes

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequencesof use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license isgranted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication aresubject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics productsare not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -

Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

16/16

因篇幅问题不能全部显示,请点此查看更多更全内容